पायथॅगोरसचा सिद्धांत हा गणिताच्या इतिहासातला मलाचा दगड मानला जातो. मात्र पायथॅगोरसच्या शेकडो वर्षे आधीपासून जगभरच्या विविध संस्कृतींना हा सिद्धांत ज्ञात होता. या सिद्धांताच्या उपलब्ध असलेल्या, तीनशेहून अधिक सिद्धांतांत पायथॅगोरसच्या नंतर, इ.स.पूर्व तिसऱ्या शतकात होऊन गेलेल्या युक्लिड या महान ग्रीक गणितज्ञाच्या सिद्धतेचाही समावेश आहे. युक्लिडने ‘एलिमेंट्स’ या आपल्या ग्रंथात ही सिद्धता दिली आहे. पायथॅगोरसच्या सिद्धांताचे विधान विचारल्यावर ‘क वर्ग बरोबर अ वर्ग अधिक ब वर्ग’ असे आपण बोलून जातो. परंतु पायथॅगोरसच्या काळात ही बीजगणिती भाषा जन्मालाच आली नव्हती. त्यामुळे युक्लिडचे विधान ‘काटकोन त्रिकोणात, कर्णावरील चौरसाचे क्षेत्रफळ हे इतर दोन बाजूंवरील चौरसांच्या क्षेत्रफळांच्या बेरजेइतके असते’ असे क्षेत्रफळांच्या भाषेत दिले आहे. युक्लिडच्या सिद्धतेत काटकोन त्रिकोणाच्या कर्णावरील चौरस दोन आयतांमध्ये विभागला असून, या प्रत्येक आयताचे क्षेत्रफळ अनुक्रमे इतर दोन बाजूंवरील चौरसांच्या क्षेत्रफळाइतके असल्याचे दाखवले आहे.

या बातमीसह सर्व प्रीमियम कंटेंट वाचण्यासाठी साइन-इन करा
Skip
या बातमीसह सर्व प्रीमियम कंटेंट वाचण्यासाठी साइन-इन करा

युक्लिडची सिद्धता व त्यासंबंधीची आकृती ही काहीशी गुंतागुंतीची आणि दीर्घ वाटली तरी ती समजण्यासाठी फक्त युक्लिडची पाच गृहीतके, त्रिकोणांच्या एकरूपतेचे (कॉन्ग्रुएंट ट्रँगल) निकष आणि क्षेत्रफळाची सूत्रे ठाऊक असणे पुरेसे आहे. त्यामुळे ही सिद्धता एलिमेंट्सच्या पहिल्याच खंडात येऊ शकली. परिणामी, एलिमेंट्स हा ग्रंथ पाठय़पुस्तक म्हणून वापरणाऱ्या अनेक पिढय़ांना, पायथॅगोरसच्या या सिद्धांताची ओळख सुरुवातीलाच झाली. आजच्या पाठय़पुस्तकातली, इंग्लिश गणितज्ञ जॉन वॅलिस याने सतराव्या शतकात लोकप्रिय केलेली सिद्धता ही छोटेखानी आणि सुटसुटीत आहे. मात्र ती त्रिकोणांच्या समरूपतेवर (सिमिलर ट्रँगल) आधारलेली असल्याने, समरूपतेचे गुणधर्म माहीत असल्याशिवाय ही सिद्धता समजून घेता येत नाही. युक्लिडने समरूपतेला थेट सहाव्या खंडात स्पर्श केला आहे.

पायथॅगोरसच्या प्रमेयाची सिद्धता हा पहिल्या खंडाचा उत्कर्षिबदू असला तरी काहीशी दुर्लक्षित राहिलेली, त्याच्या व्यत्यासाची (कॉनव्हर्स) सिद्धताही उल्लेखनीय आहे. ‘त्रिकोणाच्या एका बाजूवरील चौरसाचे क्षेत्रफळ हे जर त्रिकोणाच्या इतर दोन बाजूंवरील चौरसांच्या क्षेत्रफळाच्या बेरजेइतके असेल, तर तो काटकोन त्रिकोण असतो’, हे सांगणाऱ्या या व्यत्यासात पायथॅगोरसच्या सिद्धांताचे विधान कौशल्याने वापरले आहे. या दोन्ही सिद्धांतांचे तर्कशास्त्रीय सौंदर्य अनुभवण्यासाठी त्या संपूर्णपणे मुळातून वाचणे आनंददायी ठरते.

– माणिक टेंबे

मराठी विज्ञान परिषद,

वि. ना. पुरव मार्ग,  चुनाभट्टी,  मुंबई २२ 

office@mavipamumbai.org

युक्लिडची सिद्धता व त्यासंबंधीची आकृती ही काहीशी गुंतागुंतीची आणि दीर्घ वाटली तरी ती समजण्यासाठी फक्त युक्लिडची पाच गृहीतके, त्रिकोणांच्या एकरूपतेचे (कॉन्ग्रुएंट ट्रँगल) निकष आणि क्षेत्रफळाची सूत्रे ठाऊक असणे पुरेसे आहे. त्यामुळे ही सिद्धता एलिमेंट्सच्या पहिल्याच खंडात येऊ शकली. परिणामी, एलिमेंट्स हा ग्रंथ पाठय़पुस्तक म्हणून वापरणाऱ्या अनेक पिढय़ांना, पायथॅगोरसच्या या सिद्धांताची ओळख सुरुवातीलाच झाली. आजच्या पाठय़पुस्तकातली, इंग्लिश गणितज्ञ जॉन वॅलिस याने सतराव्या शतकात लोकप्रिय केलेली सिद्धता ही छोटेखानी आणि सुटसुटीत आहे. मात्र ती त्रिकोणांच्या समरूपतेवर (सिमिलर ट्रँगल) आधारलेली असल्याने, समरूपतेचे गुणधर्म माहीत असल्याशिवाय ही सिद्धता समजून घेता येत नाही. युक्लिडने समरूपतेला थेट सहाव्या खंडात स्पर्श केला आहे.

पायथॅगोरसच्या प्रमेयाची सिद्धता हा पहिल्या खंडाचा उत्कर्षिबदू असला तरी काहीशी दुर्लक्षित राहिलेली, त्याच्या व्यत्यासाची (कॉनव्हर्स) सिद्धताही उल्लेखनीय आहे. ‘त्रिकोणाच्या एका बाजूवरील चौरसाचे क्षेत्रफळ हे जर त्रिकोणाच्या इतर दोन बाजूंवरील चौरसांच्या क्षेत्रफळाच्या बेरजेइतके असेल, तर तो काटकोन त्रिकोण असतो’, हे सांगणाऱ्या या व्यत्यासात पायथॅगोरसच्या सिद्धांताचे विधान कौशल्याने वापरले आहे. या दोन्ही सिद्धांतांचे तर्कशास्त्रीय सौंदर्य अनुभवण्यासाठी त्या संपूर्णपणे मुळातून वाचणे आनंददायी ठरते.

– माणिक टेंबे

मराठी विज्ञान परिषद,

वि. ना. पुरव मार्ग,  चुनाभट्टी,  मुंबई २२ 

office@mavipamumbai.org